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! 3
1 3
2 N
Fig. 8.8(¢) Triangular element Fig. 8.8(f) Triangular element with
with curved side as cubic polynomial curved sides

The parametric equation to the curved side 13 becomes
x = x1+ (x3—x1)n+n(1 = 7)1 +ozm)
-~ y=pr+(ra=ym+ (1 = n)(Br+ Ban) (8.134)
whlch may be reduced to a parabola by choosing .
x5=x4—3(x1—x3)
ys=ya= 31— y3)

Triangle with curved sides

We consider a curved triangular element 123 as shown in Figure 8.8(f).
We take the quadratic polynomial on two sides and fourth degree Lagrange
interpolation on the third side.
The isoparametric mapping is given by

x=x1+(x2= x0)€ +(x3— x1)n +7(1 = £ = n)(@1 + azn -+ x3n?)
y=r1+2=yé+(vs=yn+a9(l1 —=€=n)Bi1+Bm+Bsm?)  (8.135)

where

aj= _%z-x, —2x3+-1-3§x4 - 12xs5+ 16x6

az=16x1 +13é X3—32x4+64xs— i:;oxs

2
o3 = —%XI —%%x3+l§§x4 64xs+ -!—g-s—xs

22 16
Bi= —-3—y1 ~2y3+—3—y4— 12ys+16ys

B2=16 +'-15§y3 —32y4+64ys— l—g—o—ys

32 32 128 12
Bs= - Iyt e 6dps+ ——3-8-y6
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The parametric equation to the curved side becomes _
x=x1+ (= x)n+n(l =)@ +am+asm?)
y=y1+ (3= yn+a(l - 1)(B1+ B+ Bsn?) (8.136)

8.4.8 Numerical integration over finite element

The formulae for evaluating integrals over the elements in one, two and
three dimensions are given by (8.54), (8.72) and (8.111) respectively when
the integrand is a polynomial integral powers of the local coordinates. We
now evaluate the integral of the form '

1==J’ F(x) dx (8.137)
(e)
where F(x) is a given function, (e) is the element and x represents one or

multidimensional coordinates. The integral (8.137) in terms of the local co-
ordinates becomes

1=j |31 f@dL (8.138)

S)

where (S) is the standard element, L are the local coordinates, | J | is the
Jacobian and f is the transformed F. The integral (8.138) after neglecting
the truncation error term may be replaced by the formula

[ 15170 at= & wiswn (8.139)
(€))

where W; and L are the weight coefficients and the abscissas respectively.
We discuss the quadrature formulas for the line segment and the triangu-
lar elements.

Line segment element
The interval [x;, x;+1] is the line segment element and the local coordinate
is defined by (8.51),

1= 2x= G+ x)
(Xis1—x1)

The quadrature formula (8.139) becomes
' I®
I= (L*'z'—x‘)- f fWydL="5 3 w2 fL®) (8.140)
=1

where 1) = x;,1 - x; is the length of the element (e). The values of W' and
L@ for the Gauss quadrature formula are listed in Table 8.1.
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TABLE 8.1 ABSCISSAS AND WEIGHTS FOR GAUSS QUADRATURE FORMULAS
n._ +Li(*) Wi
1 0 2
2 AWV 1
3 0 8/9
V35 519
4 ((15—2V/30)/35)/2. 0.65214 51548 62546
((154+-2V/30)/35)12 0.34785 48451 37454
P 0 _ '0.56888 38883 88889
(35—2V/70)/63)* 12 0.47862 86704 99366
(35 1-2//70)/63)1/2 0.23692 68850 55189
6 0.23861 91860 83197 0.46791 39345 72691
0.66120 93864 66265 0.36076 15730 48139
0.93246 95142 03152 0.17132 44923 79170
Triangular element
The formula (8.139) becomes
1 1=
l=24(')J’ I J(Ly, L2, L3) dLy dLa
(V] 0
n
=249 ¥ WONLY, LY, 15) (8.141)

where 4 is the area of the triangular element. The values of the local co-

ordinates L/ and the weights W/ are given in Table 8.2,

TABLE 8.2 Anscissas AND WEIGHTS FOR QUADRATURE FORMULAS FOR TRIANGLES

n i Lf”’ Lg", Ls(f) Wl(')
1 (Linear) 1 13 113 13 12
2 (quadratic) 1 1/2 12 0 1/6
2 0 12 12, 1/6
3 1/2 0 1/2 1/6
3 (cubic) 1 1/3 1/3 1/3 -9/32
2 3/s 1/5 1/5 25/96
3 1/5 3/5 1/5 25/96
4 1/8 1/5 3/5 25,96

8.5 FINITE ELEMUENT METHODS

For the sake of simplicity, let us limit equations (8.1) and (8.2) to a iwo-
dimcensional boundary value problem

Llu}=r(x, y),

Uplul=ry,

(x, meR
v, yi= o R

(8.142)
(%1437
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where u(x, y) is the unknown function, L denotes the differential operator
with the highest order derivative m, r and r, are given functions, and U,
represents the boundary differential operator. :
We divide the domain R into M finite elements R, RD, ..., R™ and
write the approximate solution win (8.4) as a sum of the piecewise approxi-
mate solution as '
w=uD +uD+ ...+ U@ 4. M) (8.144)
where the superscript (e) denotes the eth element and ) is only defined in
the element (e) and is taken to be zero elsewhere. The function u'® is gener-
ally expressed in terms of the shape functions and nodal parameters of the
clement. We have
() = N(©g(©) ' - (8.145)
where N@ is the row vector of the shape funttions and ¢ is the column

vector which depends on the nodal values of the function u or its derivatives.
Further we can also write the function #© in the form

ud=N@¢$ (8.146)

where N is an extended 1 x N row vector, ¢ = [¢i¢z---¢~]" is N x 1 colrmn
vector and N denotes the total number of nodal parameters in the domain R.
The approximate solution w in (8.144) becomes

Mo
w= z,l N©¢ : (8.147)

Substituting (8.145) into (8.142), we write the residue in the differential
equation within the finite element R as

E@®]= L] - r(x, ,, . (8.148)
The residue in the differential equation (8.142) in the domain R is given by
Elw]=Llw]-r(x, y) (8.149)

The nodal parameters ¢ may be determined by using any one of the methods
in Subsections 8.2.1-8.2.5 and 8.3.1.

8.5.1 Ritz finite element method

Let us assume that there exists a variational principle for the boundary
value problem (8.142)-(8.143) and that we look for an extremum of a func-
tion of the form '

Ju)= j FdR+Y (8.150)
R ,

where ¥ may be zero or an integral over parts of the boundary dQR. Substi-
- tuting the approximate solution w from (8.147) into (8.150) and extremizing



FINITE ELEMENT METHODS 561

the function J[u] with respect to the nodal parameters ¢, we obtain the

equations
9JTwl _[QJ_ 9J ,31_]"_ .
raiad Prole sl res =0 (8.151)
If we assume that the functional J[w] can be written as a sum of element
contributions as
M
Jw]= 2. J© (8.152)

where the quantity J© may be called the element funciional then the equa-
tions (8.152) become : -

o] Maje . '
= X =0 i= 10N (8.153)

The summation is over all the.elements in the domain R and node i may be
common to several finite elements. The equation (8.153) gives the finite
element discretization of the differential equation (8.142) at the nodes
i=1(1)N. Incorporating the boundary conditions we get a system of equations
which may be solved by the methods discussed in Section 7.4.
Alternatively we may consider the extremization of the element functiona!

J' with respect to the element nodal parameters () and obtain

oJ@

W) =0 (8.154)
The equation (8.154) gives the required finite element equations for a typical
element (¢). These element equations are assembled according to (8.153) to
obtain the overall equations.

8.5.2 Least square finite element method -
Using (8.149), the square of the residual E over the entirc domain R
becomes :

WE[w]= JJ E2dR (8.155)
R
The necessary conditions for WE[w] to be minimum are given by
OWE OE o o i |

which gives the required system of equations.
Assuming that (8.155) can be expressed as a sum of element integrals. and
then substituting (8.148), the equations (8.156) become

M: 3 '(c)é.El)_ QO = (). §=
0P ,2.:.2 LLE 2¢; dR@=0, i= (DN (8.157)
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Summing over all the elements of the domain R we obtain the least square
finite element discretization of the differential equation (8.142) at the node 7.
The least square finite element equation for a typical element (¢) may be
written as .

(e) - (e)
ag;ﬁ) =2” E(,,%dfk<¢>=0 | (8.158)
QR

Assembling the element equations as in (8.157), we obtain the matrix equation
for the nodal parameters ¢.

8.5.3 Galerkin finite element method

Using (8.147) and (8.149) the Galerkin system of equations (8.16)
become

J f &’1 NO)E[w] dx dy=0 (8.159)
KX

which may be written as
f ( f j N@E[w]) dx dy=0 (8.160)
e=| .(R(e)

The equation (8.160) represents the system of equations in the nodal para-
meters.
The Galerkin equations for a typical element (e) are given by

NOTE@[®)] dx dy =0 (8.161)
0]
The summation of the element equations (8.161) according to (8.160) gives
the matrix equation for the nodal parameters ¢.
We may again show as in (8.43) that the Ritz finite clement equations (8.153)

and the Galerkin finite element equations (8.160) are identical matrix
equations.

8.5.4 Convergence analysis

The accuracy in the finite element solution can be increased either by
decreasing the size of the elements or by increasing the degree of the poly-
nomial in the piecewise approximate solution. The convergence of the finite
element solution to the exact solution as the size of the finite element appro-
aches zero is obtained if the following conditions are satisfied:

Completeness

This is the condition that, as the size of finite element approaches zero,
the terms occurring under the integral sign in the weighted residual or varia-
tional formulation must tend to be single valued and well behaved.
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Thus the set of shape functions chosen must be able to represent any con-
stant value of the function u as well as the derivatives upto order m (highest
derivatives occurring in WE or J[u]) within each element in the limit as
element size approaches zero.

Compatibility

This is an interelement continuity condition. If the order of the hxghest
derivative in the weighted residual equation WE (or functional J[u]) is m,
then the finite elements and the shape functions are to be selected such that
at the element interfaces, the function u has continuity of all the derivatives
upto the order m—1.

The finite elements satisfying this criterion are called the conforming ele-
ments, otherwise nonconforming elements. If the compatibility condition is
satisfied then it is possible to express WE or J[u] as a sum of elemental con-
tributions.

8.6 BOUNDARY VALUE PROBLEMS IN ORDINARY

DIFFERENTIAL EQUATIONS
We solve the linear boundary value problem
- 2(o%) +athu=r() (8.162)
subject to the boundary conditions
u(a)=y1, u(b)=y2 (8.163)

Let us consider the functional

J[u]=-%—b[ p(‘;“) +qu2 2m]dx (8.164)

It is easily verified that the necessary condition for 3J[u]=0 is given by
(8.162). We discretize the interval [a, b] with N +2 nodes and N + 1 elements
as shown in Figure 8.2. We assume that the functional J can be written as
a gam of N +1 elemental quantities J© as.

N+t
Jlul= Zl J© (8.165)

oy

where

1 1 du(c) 2
yo= 1 [ » (—-) + g - Zm(')] dx (8.166)
2 dx
Xy
and, x; and x; are the coordinates of the end nodes of a typical line segment
element (e) as shown in Figure 8.9. The function (¥ is defined over the ele-
ment (¢) and zero elsewhere. We take the approxnmate solution in the form
(see (8.45))
Y= Npyj + Nisik = N@O@) (8.167)
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+[ ai(-lzl,l—l a}i—)l,i ] [”i—l] +[al(,il+” af,‘#x) ] [“’ ]
al’i_y a’; Ui aith e, Uit1
s [ MR A, ] { un ]_
a;v'v:l! )N al(vﬁii l )N+ 1 UN+1 : .
[ 5’ ] [b‘,” b2 v
- g - S 1=0 (8.177)
b{" bS”J [ bf" ] [ bR ] '
The matrix equaiion resultihg from the assembling of the element equations

from the ith and (i +1)th clements is obtained by adding the equations in
rows 2 and 3. The assembled matrix equation becomes

Uy U Uy
0521. -1 0;21,1 o Ui-1
a;f)i-l a:,ux) + a/flfq.'n) u;

a5

L 0 al‘fi'} aifili | L %1
r 2
O+
= 5 D (8.178)

b
We apply this process to N + | elements (see Fig. 8.2) and get single matrix
equation ‘

A¢=DH (8.179)
where A and b are (N +2)x(N+2) and (N +2) x 1 matrices respectively.
The equation (8.179) is represented in schematic form in Figure 8.10.

The finite element discretization of the differential equation (8.162) at
X =Xx; is given by the (i + 1)th row of the equation (8,179):

0 g T R TR RPN (+1)
- (%T' — —q6—"1(’)) Ui-1 +(l’;(”— + %“TIT + q3_1(i)+ q 3 I(H.l)) u

putd g+ 1
-(_lm -3 10) gy = _2_(r(1)1(n+,(1+l)1(1+l)) (8.180)

The equation (8.180) for = I(1)N leads to a set of N equations in N +2 un-
knowns, uo, uy, ..., un,;. Substituting the boundary conditions o= ys, UN+1
=72, we get a tridiagonal system of N equations in N unknowns uy, 2, ey UN.
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Alternatively we may incorporate the boundary conditions (8.163) into
(8.179) directly. For example, to incorporate the condition yo=y1 into
(8.179) we may adopt the following procedure:

(i) Multiply all the off-diagonal elements of the first column in A by 7
and transfer them to the right side of the equation (8.179).
(ii) Set all the off-diagonal elements in the first column in A to zero.
(iii) Set in A all the off-diagonal elements of the first row to zero and the
diagonal element equal to one.
(iv) Set the first element in b to 1.

In a similar manner we may incorporate the condition un+1= y2into (8.179).
The system of equations (8.179) incorporating the conditions (8.163) can be
written in schematic form as

r1 - - « . A uo- ,—qu ] l—‘.1
X X
X X « . ut e :
. X :
X X X een o : = - -
% Y1 - 72
. ' x y
X X UN X . X
[_ o 1AL uver ] L 72 Lo L -
, (8.181)

where (x) and (s) denote a number and an empty location respectively. The
matrix A in (8.181) isa tridiagonal symmetric matrix.

8.6.2 Mixed boundary conditions

If we associate with the differential equation (8.162), the mixed boundary
conditions '

agu(a) +a1u'(@) =1
Bou(b) + Biu'(b) = y2 (8.182)

then, instead of (8.164) we use the functional
b

Jul= —;—-j (pu'2+ qu = 2ru) dx +p—2(£- (- xou¥(a) + 2y1u(a))
+§—’(£-)-(ﬂou2u(b)-2)fzu(b)) (8.183)

The first and the last element functionals respectively may be written as

JO= -;—*J‘ [p(u@" P+ q(u®)? = 2ru®] dx + -ﬁ%( — agug - 2y1tig)
X0
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or

N, o) X*
{— [ ! ] () ‘%—’% +AORO - pO=0 (8.189)
Nk ‘ Xy

N; du@ ™ . . .
The term § - p(x) I contributes to the terms of b® if the deri- .
Nk , .

X

vative du/dx is specified at either end of the element (e) otherwise it is
neglected. Summing (8.189) for all the elements we get the system of equa-
tions (8.179) which is the same as obtained by using the Ritz method.

Example 8.6 Solve by the finite element method the boundary value problem
w+(+x)u+1=0, u(£1)=0

Using (8.164), the functional can be written as

1
J[u]a—;—-f (-u?+(1+xu2+2u) dx
=1

We have

Xk ’ . » .
NN, NN N;N; NNk
A“’=j {-[ A ]+(1+x’)[ ]}dx
X, NiNj NNk NixN; NiNk
= ;, $9= s Ni= (e —
% N Uk {© (xx = x)

, i
Ni= Fc“j(.\"- xj), 19 =x—x;

Simplifying we get

..\mz__‘,)[ | -1]+,_(2[2 1]
vy 1) S 2

e [2(10.\-} F5x1@ +1©2) 107 + 10x,1@ + 31?2 ]
60 | 10xF 4+ 10x1€+ 312 2(10xF + 15,0149+ 61€)

| ]'.")‘ l
~ L1

We now compute the results for the following cases:
{i\ A=}, there arc two clements as shown in Fig. 8.11(a).
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.- --— _ °
-1 (e)=1 0 (e)=2 |
“1 u2 U3

Fig. 8.11(a) Representation of elements

We have
for element (1);

xj=—1, xx=0, V=1,
1—1] 1[2 1] 1[12 3]
AW = — +== +
-1 1] ¢l 2f SOp3 2
60 g3 38

1
.,(.>=L[ ]
2\ 1

for element (2);
x;=0, xk=1, (D=1,

. - 1] - [2 1] 1 [2 3]
A( )= — +— +— )
-1 1} L 2 O3 12
1 [— 38 73]
60| 73 _28 .
1
1
¥z [ 1 ]
Collecting the contribution from both the elements (1) and (2) we obtain
-28 73 O‘] u 1
| ” ; 1 .
66— 73 —(38+38) 73J U2 +-5- [+1]|=0
0 73 —28] iy 1

Thke boundary conditions, w1=0, u3=0, are incorporated by deleting the
rows and columns corresponding to ¥ and #3. We get the required equation

76
"'6—6'?(24‘1—0

15 0.78947

llz=—"=“]"'(')'

or 76

(i) h -:--;—-, there are four elements as shown in Fig. 8.11(b)
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1 2 3 4 .S
~— > - >— -
-1 (e)= 1 (e)=2__°-(e)=3 (e)=4 1

Fig. 8.11(b) Representation of elements

We have
for element (1); x;= —1, x¢= _%., 1(!)_—__12_
1 [—818 1023] 1 [ 1 ]
A= , b=
480| 1023 -848 41
for element (2); x;= ——;—, xk=0, 1(2)=_;_

| [-868 1003] ) [ 1 ]
AD = — ,b@=—|
4801 1003 -878 411

- for element (3); x;=0, xk= _;_, 13 = _2'-

. [-878 1003 (T
A(3)=»——-— , b(3)=—
480 | 1003  -868 41

for element (4); x/=—;—, xk; 1, 1«):%

| [-848 1023 [y
AD = —— b=
480 | 1023 -318 411

Collecting the contribution from each element we have

(-g18 1023 0 0 07 wl [ 17
1023 -1716 1003 0 0| |u, 2
1 0 1003 -1756 1003 o |us +| 2 |=0
480 4 ~
0 0 1003 -1716 1023 | | us | 2
L o 0 0 1023 -818] |lws] L1

Using the boundary conditions u1 = us =0, we obtain the system of equations
1
480

L ~ I
m[lOO?auz— 1756u3 + 1003ud] -+ 5= 0

[- 17l6uz+1003u3]+—%—=0

1 1
58'0“{1003113 -1 716&!4] -4- ’5‘ =0
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It is easily seen that u2=u4 and we have the required two equations

1 1
m[—878u3+ 1003u4]+—4—~0

1 1
-4?6[1003143— 1716u4) + 2 =0

Solving, we get
u3=0.8921398, u4=0.6613148

Example 8.7 Use the finite element Galerkin method to derive the difference
schemes for the boundary value problem

w—Ku =0
. u0)=1, u()=0

where K > 0 is assumed constant.
Obtain the characteristic equation of tae difference schemes.
The exact solution of the boundary value problem is

= (eR¥ - eF)/(1 - eF)

The Galerkin equations (8.187) for a typical line segment element (e)
(Fig. 8.9) may be written as

Xk

2 €
[vr (22 _ )
Xj

dx?* KE-

where u© = N()¢( is the piecewise cubic Hermite polynomial,
N = [N;H;NeHil, $© = [uy uy ure u)T
and
Nj=Lj(3-2L)
Hy=19L3L,
Nie=Li(3-2L)
Hi= - 1OLL}
Using (8.54) the line segment element equation becomes
(A€~ KB®)¢©) =0

where
[[-36 =3/ 36 =3[
-3 1 (O] - 41(0)2 3 [(2)2
A0=_L -
3000 3¢ o —36 3@

L =31 Jen 31@ -4 |
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is the contribution of the element (e) to the functional J. The conditions
for minimization of the functional J in (8.196) with respect to the nodal
values ¢, i = 1(1) N give the following system of equations

oJ ¥ gje@ , '

W = Zx —_3¢1 0, i=l(1)N

'y

or
aJ] M gJe@
%L a0 (6198
since J depends on the nodal values associated with the clement (e) only.
3)@ s .

The equationmao is called the element equation. It generally turns

out that one term of the summation gives the form for the other terms.
Therefore, it is sufficient to explicitly consider the contribution of only a
typical finite element (e). Differentiating (8.197) with respect to $) we get

aJ® INOT\ IN@  IN@T N
[ C5) 322

) *(c)_. r N®T }dx dy

4@ = ) ox Ox . dy dy
(e :
(8.199)
Thus, the element equations become
A —p@ =g (8.200)
where ,
IN@OT IN@© aN@OT N
A(’)-IJP( ox ox T dy 7y__) dx dy
b = .” r NOT gx dy (8.201)

)
In what follows we shall assume that the functions p and r are constant over
each clement and are represented by p and r@ respectively.

Linear triangular element
We consider a three-node triangular element (e) with nodes ifk as shown
in Figure 8.12(a). '

(e) )
i j
Fig. 8.12(a) Triangular element .
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Using (8.63), the linear piecewise approximate solution over the element (e)
may be written as

4@ = Nau+ Npgy-+ Niur = N€Og(© (8.202)
where
N = [N;N;Nx], ¢© =[u; 1y w7

1

Ni= 24@ (ai+bix +c1y)
1

Nj= 5w (@+bx+cpy)

1
Nk"m @k + bix +cry)

1 x; Yi

a0atdetl 1 5 y

1 xx »
Qi = X;yk — Xkyj, bi=y)— y, ci= xx—x;
aj= XKy = XiYk, bj= yr—yi, ¢j= X1 = xx
Qi ™= X1y = X;Yi, be=yi=y), ck=x;—xi

Substituting (8.202) into (8.201) and, using (8.71)-(8.72) for simplification.
we get the element equations (8.200),

A©O) — ) m 0 (8.203)
where '
b+ et bib;+cicy bibx + cicx -‘
S o)
A= 45((,,_ bbj+cicy  bj+ci bsbx+ cjck
_ bibx+cick  bjbi+cick bi+Ck.
1 7
o) m L04¢ “"-l_ " (8.204)
1 '

Quadratic triangular element
Next, instead of the linear function (8.202) we use the quadratic approxi-
mate function of the form

4 = N+ Ny + Njuy+ Nutim + Nitiic + Nitn = N(©§©) (8.205)
where the six-node triangular element (e) is shown in Figure 8.12(b). The
functions Ny, N, ..., Nx may be written with the help of (8.79) as

Ni=2L3-L, Ny=2Li~L, Nem2Li-L:
Ni=4L,1,, Nm=4L,L;, Nu=4L:L;
N@w [Ny Ny Ny...Na and & = [oay 21 ... )T



[
1 '}
K = ghr(® , =
1 Uk
1 L ow

Friangular element with one cuzved side.
A typical triangular element with one curved
8.12(d).

j
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2 1 -1 =21
1. 2 -2 -1
-1 -2 2 1
-2 -1 1 2]

(8.210)

side .is shown in Figure

Fig. 8 12(d) Triangular elemént with one curved side

The approximate solution may be chosen of the form (see (8.131))

¥®) = Ngyy+ Npgy + Naatr + Ny
‘where
Ni=L(1-2Ly), N;=L,
Nax=Ly(1-2L;), Ni=4LiL,s
The clement equations in this case become
ACN® — ) a0
where '

A“’-fﬁ%x
(bi-baP+8) (Bby~2bbe).  biba
- ay (im2by)
Symmetric (o= b2+ b)

(8.211)

(8.212)

—4b}
(4bii+4b b)) .l
(8b3 + 8bsbs + 8b7)
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p(')
124
[ (ci—cr)*+ CIzc) (cicj— 2¢jce)
303
Symmetric
L
17
2
b(‘)g A(’) r(‘)
1
2

CiCk

(cick— 2cicy)

((cx =i+ )

8.7.1 Assembly of element equations

The equation (8.198) becomes

ﬁ (A9p©) ~p(e)) =0
em| .
which may be assembled into a single matrix equation
Ap-b=0
where
M
A= ZlA“) ‘is a N x N matrix
em
M
and b= 2‘ b©@ jsa N x1 matrix
e=-

(4cjcr +4cic 1)

(8¢ +8cick +’8c?)

581

-

(8.213)

(8.214)

(8.215)

The matrix A may be arranged into a band matrix. The maximum width of

the band is affected by the way the nodal points are numbered.

We now describe the formation of the equation (8.215) when the region R
is composed of only eight triangular elements as shown in Figure 8.13(a).

6 4
(6) (8)
(S) (n
3¢ 0 3
(2) (4)
(1) (3)
& 8

Fig. 8.13(a) Triangular network
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By summing the above columns we obtain the elements of the first row of
the matrix A. The element of the first row of the matrix b may also be ob-
tdined in a similar manner. The finite element discretization of the differen-
tial equation (8.190) at the node ‘0’ is given by the first equation of (8.215).

(3) 4) (3) 6) 4) N 6) 4- p(7) 2) 5)
(p(z) P2 P( P +P( + (7))" _p ;‘P( [ ;‘P m_P( ;’P‘ us

2) 4 pl3)
_H ;_P( -6—-(r(” +rP 4@ 4 7D 4 p®) 4 p(D) (8.218)

For the case of constant p and #(x, y) =0, the equation (8.190) is the Laplace
equation

and (8.218) becomes
4uo—(u1 + 12+ us + ug) = O (8.220)

which is the 5-point formula. ‘
Next we determine the eqnatnon (8.220) for the rectangular network shown
in Figure 8.13(b).

(1) (&)

Brﬁ <424

hi (2) (3)

N, = )

Fig. 8.13(b) Rectangular network

The element equation (8.209) becomes

4 -1 -2 -1 u ri
- -1 =2 1
p(“) 1 4 1 2 U - ©
6| -2 -1 4 -1 w | = | @220

L -1 =2 =1 4 JL w)] L1

lele 8.6 shows the nodes ijk/ of the rectangular element Fig. 8.12(c) which
correspond to the nodes of the elements (1)—(4).
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TABLE 8.6 ELEMENTS AND NoDis

Element -Nodes
(e) i 7 k /4
1 3 0 2 6
2 7 4 0 3
3 4 8 1 0
4 0 1 5 2

It is easily verified that the difference equation (8.220) at the node ‘0’ for

the Laplace equation (8.219) is given by
ur+ur+us+us+us+ue+ur+us—8ug=0

or 83utym + 8y bt + $838 788t m = 0 (8.222)

The incorporation of the Dirichlet boundary conditions into the matrix
equation (8.215) has already been discussed in Section 8.6.1. The solution
of (8.215) after incorporating the boundary conditions gives the approximate
solution of (8.190).

8.7.2 Mixed boundary conditions
We consider the differential equation (8.190) subject to the boundary

conditions of the form
alshu+ az(s'ﬂ-,e(s) on 3R (8.223)

where 7 is the unit outward normal, s is the boundary coordinate measured
from a fixed point as shown in Figure 8.14, and a(s), 2x(s) and B(s) are pres-

cribed functions of s.
[
y

- X

Fig. 8.14 Boundary elements of the dormain
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Using a similar argument with similar assumptions we may obtain;
For the side jk on the boundary QR

0 o0 o
0

poro 2aleda | 1

(@ 6 L

(@2 2

L

1 2

0
|
! (8.233)
J

—

for the side ki on the boundary oQR

B0 o Pa)u sk

(22)s 6

o
o

11
e emﬂkl Sik_ .
1= (@2 2 0 (8.234)

1
If there are two sides of the element (e) on the boundary then the boundary
integral becomes a sum for the each side.
~ Further, if we use a six-node triangular element (e) (Fig. 8.12(b)) and as
sume that the side ij lies on the boundary then the element matrices A®)
B@, b and d are modified. The matrix d® becomes

C LiQLi-1) )
4L1L,
. j‘(fﬁ Les- ),
x2 0
Si
0
_ 0 N
- - _
4
wBysn | 1
- . (8.235)
Lo
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Similarly, if we use a rectangulur element (e) (Fig. 8.12(c)) and assume the
side jk along the boundary then the matrix d( is given by

ro 1
o | =1-m
d"’-j 28 2 ds
a2 |
s 5 (1+7)

Lo i

0]
L
2bpubp | 2 .
=*&)—4‘”‘,,‘ . (8.236)
2
| 0]

where 2b is the length of the side jk.

The element equation (8.227) can be summed up for all the elements com-
prising the domain R and the boundary JdR and we obtain the equations
of the form (8.215).

8.7.4 Galerkin method
The Galerkin equations (8.161) for the differential equation (8.190) may
be written as ‘

f ou®\ af cu9
[ -3l o %)-5 (2 57) ) ax =0
QRE
i= 1, 2’ > q (8.237)

where N; are the shape functions defined piecewise, element by element and
g is the number of unknown nodal quantities assigned to the element (¢).
We should be careful in choosing #©) because the second derivative terms in
the integrand may become zero in¢ide a finite element. Before substituting
for 1© we express the first and second terms in the integrand in the form

/] ou'®
’”’ - Nié;( p 'a—\*) dx dy
g{(e)
o dNi u®
=—| Nip57 s ds+ /“- Pae e dx dy

SR e)
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TABLE 8.7 PARAMETERS FOR Eme EQUATIONS

Element Nodes
(e) i 7
1 2 3 1
2 -4 5 2
3 5 6 2
4 6 3 2
Element B Coordinate B
(e) ; X Xj Xk » Yi S 2
1 E 1 1 3 1 1
2 0 1 i 0 0 }
3 3 1 3 0 0 1
4 1 1 ¥ 0 + L
Element 'Parameters.
(e) bi b, be ci ¢ . [ 49
Y=Yk n—yi Vi=Yyi o X=X, XiT Xk X, = Xi
1 -3 H 0 0 it ; b3 18
2 -3 Y 0 0 -1 3 8
3 -3 ] 0 —* 0 1 18
4 0 } -% -1 3 0 I

To assemble all the element equations into a single equation, we may writc

18
1°2
{ 1
¥ Avgo=}! -1
=, .
" us
2
+4 -1
-1

u3

-1
2.

-1

Ut
0o
-1

u2

[/

u

3

1

_!.H_"—
J }

Us

1
|
O

us

2

u2
0
=1
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Using the row-column location of the nodal values u;, we have

4
2 A(¢)¢(¢)='§ X

u Cm us us | us | ue .1,
1 0 -1
o |i+t+1| =1-1] o | -1-1] 0+0 ]
: u2
C o+l
N u3
-1 -1-1 2+2 . -1 us
- ~_-—0_ e 1 1 “
_ N Lus_
-1-1 -1 2+2 -1
040 -1 -1 1+1
L |
-1 0 -1 0 0 0[m]
0 4 -2 0 -2 0 u2
1 -2 4 0 0 -1l m
=t 5 o0 o 1 -1 0| u
0 -2 0 -1 4 -1 us
L e o0 -1 0 -1 21| u]
Similarly the right-band eslumn vector may be assembled as
r'l u 1 Us 1 us
4 1L ' 1 1
) ;m_-z—At I {wbgg 1 |ustgg 1 Jue
1 U 1 u2 1 uz
[ 1+0+0+0 ] m I

[l

1+1+1+4+1 w2
1+0+0+1

. 0+140+0 |ue 24|
O+1+140 | us.
0+0+1+1 Jus |

+
. N'In—

s &

]

N_

13

w

[

|-
NN =N e -
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The assembled matrix incorporating the boundary conditions is given by

f12 0 2 0 -8 0 -8 0 0 O w ]
0 3 1 0 0 0 0 0 -4 0 | u
2 1 12 0 0 0 -8 0 -4 -4 || u
0 0 0 16 -8 0 0 0 0 0| m
-8 O O0 -8 32 0 0 -8 0 o0 Uy
0O O o0 o0 o0 116 -8 0 -8 0 10
-8 0 -8 0 0 -8 32 -8 0 0 || un
0 0 0 0 -8 0 -8 32 0 —8 || up»
0 -4 -4 0 0 -8 0 0 16 0 || ua
Lo o0 -4 0 0 0 0 -8 0 16 ws |
o1
o
!
=.i_{2
o
2r
2 |
o
Lt J

Solving we obtain

u2=0,18159, 114=0.29499, us =0,22959

u1=0.07172, w=0.11219,  110=0.26374
unn=0.21759, ui2=0.13294, u14=0.27864
u1s=0.13949

Example 8.9 Use the finite element method to solve the boundary value
problem
Pu=—12xy, x,y>0, x+p<]1
=0  on the boundary

with h-—;-.
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The exact solution of the boundary value problem 1s
u=xy(1-x*-y?
We discretize the region, x, y = 0, x2+)? < 1, with the help of the tri-
angular elements as shown in Figure 8.16(a).

7

3
Fig. 8.16(a) Trianguiar elements

The equation (8.204) gives the element matrix 4 for a typical tnangular
element (e) (see Fig. 8.12(a)). The elements of the matrix b"’s[bf' b bir

for r(x, y)=12xy based on exact calculations are
b = T[6x.-y.- +2x5y; + 2xiyk + 2(xiy; + x591)
+ 2(xiyx + xpi) + (xiyr + yixi))
(&) o —[Zx,y; + 65y + 2x1yi+ 2(x1y; -+ x5p1)

j

+ (e + xuy1) + 2(x;yx + yyxa))
4@
bﬁ.’) = =5 [2x;y1 +2x5yj + 6xXk Yk + (x5 + x;91)

+ 2(xiye+ xiyi) + 20,y + yyxi)] -
The parameters required for the calculation of the element equations are

listed in Table 8.8.
Using the equation (8.204) and Table 8.8 we get the element equations

2 -1 -1 u 2
. 1
@=LI~1 1 o0 w =160l 4 |
1 0 1 Us 4
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TABLE 8.8 PARAMETERS FOR ELEMENT EQUATIONS

Element Nodes
O] i J k
1 1 2 4
2 4 2 5
3 2 3 5
4 5 3 6
5 4 5 7
6 7 5 8
7 5 6 8
Element Coordinates
(e) Xi x; Xa yi 87 Yr
1 0 1/2 0 0 0 12
2 0 12 12 12 0 12
3 12 1 12 0 0 12
4 12 1 Vi 1/2 0 12
5 ) 12 0 12 112 1
6 0 12 12 1 1,2 V3R
7 12 Vi 1/2 1/2 12 Vi
Element ) Parameters
(‘, bi by bs Ci (7] Ck A40)
Y=k ya—Ji Yi=y; Xx—Xj Xi—Xi Xy Xi
1 —1/2 12 0 -12 0 12 1/8
2 -1/2 0 12 0 -12 1/2 18
3 -1/2 1/2 ) —-12 0 1/2 18
3 1 _ 1
4 -1)2 0 12 (‘—2-3——1) 7(1-v3) 12 gWi-y
5 —-1/2 12 0 -1/2 0 1/2 1/8
1 _ 1 1
6 330-v3) 2(Vi-2) 12 o -1/2 112 g3 -1

;—(1—\/5') %'(\/5-—1) 0 %—11-—\/3') 0

1 = 1 -
s3I -1 gWi-1p

(=2,

(=3,

L

F 1

0
o |
2
-1
-1

-1
-1
2

™ ug ] " 14 7
u2 ‘:’6# 14
L us | 22 |

u2 '} | 12 7
us |=Te01 14
L us 24 |
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(e)=4,
[ 2/3-1) 2-v3  -4/3 us - 2848V3
2-v3  V3-1 -1 ‘1;, =(‘/l—§.}l zz+6vs]
L-V3 -1 %(\/3'4-1_) L us 20+16V3)
2 -1 -1 w 12 )
(&=5. -1 1 0 || u *%—5 24J
-1 0 1 JL ur 14
(e)=6,
V3i-1 2-v3 -1 ‘uv'l _ 2+6v3 ]
2-v3 2/3-1) -v3 us -(‘/If”—ﬁ"—'? 28+8V3
-1 -v3 W3+ Jl w 20+16V3 _
2 -1 —17[ us 28+16V3 ]
(=7, -1 1 0 || u =(‘/—;3_65—"—)3 26+22V3
-1 0 1 4L us ' 26+22V3

Assembling the element equations we obtain

ra2 -1 0 -1 0 0 0 )[w]
-1 4 -1 0 -2 0 0 0 “
0 -1 /3 o0 2-v3 -1 0 0 “
-1 0 0o 4 -2 0 -1 0 “

0 -22-v3 =2 2+4V3 -4/3-12-v3 -V3-I
- s

_ 5 .43
- -v3i-1 =+¥3 o 0

0o o 1 0 =-v3-1 +7F ”
0 o0 0 -1 2-4/3 ()} V3 -1 .
Lo o 0 0 -vV3-1 0 -1 V3+2 J|ml



600 NUMERICAL SOLUTIONS'
r 2 B

30
104+16V3

i 32
160 | g448v/3

403
10+16/3
L 40v3 |

The boundary conditions give
u=w=us=us=ug=ur=us=0
Incorporating the boundary conditions we get
us=(39+24v/3) /160(1 +2¢/3) = 0.1128
The exact value is given by
us=0.125

Next, we take the elements (4), (6) and (7) as the triangular elements with
one curved side (see Fig. 8.16(b)).

7

Fig. 8.16(b) Triangular elements with curved sides

The parameters for the element equations are listed in Table 8.9.
We also have

= (6)=1 ﬁ—i
dO=a0=1+ 5 "8



